Saturday, 10 January 2015

ArrayList Vs LinkedList

Q1)ArrayList is faster than LinkedList if I randomly access its elements. I think random access means "give me the nth element". Why ArrayList is faster?

ArrayList has direct references to every element in the list, so it can get the n-th element in constant time. LinkedList has to traverse the list from the beginning to get to the n-th element.


Q2 )LinkedList is faster than ArrayList for deletion. I understand this one. ArrayList's slower since the internal backing-up array needs to be reallocated.

ArrayList is slower because it needs to copy part of the array in order to remove the slot that has become free. If the deletion is done using the ListIterator.remove() API, LinkedList just has to manipulate a couple of references; if the deletion is done by value or by index, LinkedList has to potentially scan the entire list first to find the element(s) to be deleted.

Q3) If it means move some elements back and then put the element in the middle empty spot, ArrayList should be slower.

Yes, this is what it means. ArrayList is indeed slower than LinkedList because it has to free up a slot in the middle of the array. This involves moving some references around and in the worst case reallocating the entire array. LinkedList just has to manipulate some references.

LinkedList and ArrayList are two different implementations of the List interface. LinkedList implements it with a doubly-linked list. ArrayList implements it with a dynamically resizing array.
As with standard linked list and array operations, the various methods will have different algorithmic runtimes.
  • get(int index) is O(n)
  • add(E element) is O(1)
  • add(int index, E element) is O(n)
  • remove(int index) is O(n)
  • Iterator.remove() is O(1) <--- main benefit of LinkedList<E>
  • ListIterator.add(E element) is O(1) <--- main benefit of LinkedList<E>
  • get(int index) is O(1) <--- main benefit of ArrayList<E>
  • add(E element) is O(1) amortized, but O(n) worst-case since the array must be resized and copied
  • add(int index, E element) is O(n - index) amortized, but O(n) worst-case (as above)
  • remove(int index) is O(n - index) (i.e. removing last is O(1))
  • Iterator.remove() is O(n - index)
  • ListIterator.add(E element) is O(n - index)
LinkedList<E> allows for constant-time insertions or removals using iterators, but only sequential access of elements. In other words, you can walk the list forwards or backwards, but finding a position in the list takes time proportional to the size of the list.
ArrayList<E>, on the other hand, allow fast random read access, so you can grab any element in constant time. But adding or removing from anywhere but the end requires shifting all the latter elements over, either to make an opening or fill the gap. Also, if you add more elements than the capacity of the underlying array, a new array (1.5 times the size) is allocated, and the old array is copied to the new one, so adding to an ArrayList is O(n) in the worst case but constant on average.
So depending on the operations you intend to do, you should choose the implementations accordingly. Iterating over either kind of List is practically equally cheap. (Iterating over an ArrayList is technically faster, but unless you're doing something really performance-sensitive, you shouldn't worry about this -- they're both constants.)
The main benefits of using a LinkedList arise when you re-use existing iterators to insert and remove elements. These operations can then be done in O(1) by changing the list locally only. In an array list, the remainder of the array needs to be moved (i.e. copied). On the other side, seeking in a LinkedList means following the links in O(n), whereas in an ArrayList the desired position can be computed mathematically and accessed in O(1).
Also, if you have large lists, keep in mind that memory usage is also different. Each element of a LinkedList has more overhead since pointers to the next and previous elements are also stored. ArrayLists don't have this overhead. However, ArrayLists take up as much memory as is allocated for the capacity, regardless of whether elements have actually been added.
The default initial capacity of an ArrayList is pretty small (10 from Java 1.4 - 1.7). But since the underlying implementation is an array, the array must be resized if you add a lot of elements. To avoid the high cost of resizing when you know you're going to add a lot of elements, construct the ArrayList with a higher initial capacity.
It's worth noting that Vector also implements the List interface and is almost identical to ArrayList. The difference is that Vector is synchronized, so it is thread-safe. Because of this, it is also slightly slower than ArrayList. So as far as I understand, most Java programmers avoid Vector in favor of ArrayList since they will probably synchronize explicitly anyway if they care about that.

No comments:

Post a Comment